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ABSTRACT

We solve the problem of propagation and dissipation of Alfvénic turbulence in a model solar atmosphere consisting
of a static photosphere and chromosphere, transition region, and open corona and solar wind using a phenomenological
model for the turbulent dissipation based on wave reflection. We show that most of the dissipation for a given wave-
frequency spectrum occurs in the lower corona, and the overall rms amplitude of the fluctuations evolves in a way
consistent with observations. The frequency spectrum for a Kolmogorov-like slope is not found to change dramatically
from the photosphere to the solar wind; however, it does preserve signatures of transmission throughout the lower
atmospheric layers, namely, oscillations in the spectrum at high frequencies reminiscent of the resonances found in the
linear case. These may disappear once more realistic couplings for the nonlinear terms are introduced or if time-
dependent variability of the lower atmospheric layer is introduced.

Subject headinggs: MHD — solar wind — turbulence — waves
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1. INTRODUCTION

In situ measurement of magnetic and velocity field fluctuations
from Helios and Ulysses have revealed a broad developed spec-
trum for frequencies ranging from 10�4 to 10�2 Hz. Typically, a
strong correlation between magnetic field and velocity fluctua-
tions in this distance range persists (Mangeney et al. 1991), cor-
responding to an outwardly propagating spectrum. It is well-known
that nonlinear terms couple Alfvén waves propagating in opposite
directions. Also, the basic nonlinearity in homogeneous MHD
in the presence of a majority of one type of waves forces the evo-
lution with time to increase the dominance, preferentially dis-
sipating the minority component in a process called dynamical
alignment (Dobrowolny et al. 1980), which is not observed in
the solar wind. Therefore, the presence of a well-developed spec-
trum together with a preferred direction of propagation has re-
mained a mystery. The question that naturally arises therefore
concerns the drivers for the continuing and anomalous (com-
pared to homogeneous MHD predictions) nonlinear cascade in
this outwardly dominant case. Among the possible drivers of a
nonlinear cascade in the solar atmosphere are compressible ef-
fects, which couple Alfvén waves with slow and fast modes, or
couplings due to the strong gradients in the atmosphere. Among
the first are phenomena such as parametric decay (Pruneti &
Velli 1997; Del Zanna et al. 2001) and wave steepening (Suzuki
& Inutsuka 2005). Gradients transverse to the mean magnetic
field directions lead to phase mixing, i.e., development of small
scales in directions perpendicular to that of propagation. Finally,
the gradients due to stratification cause wave reflection, which
naturally produces waves propagating in the opposite direction
required for the classical incompressible cascade, as first sug-
gested by Velli et al. (1989). Disentangling the role of all of
these processes at once would require fully three-dimensional

calculations in a realistic atmospheremodel, a feat beyond present
numerical capabilities. We therefore focus here on the role of
wave reflection, which has been extensively studied in the linear
case (Heinemann & Olbert [1980], Leroy [1980], and Hollweg
[1978] were among the first), while less so in the nonlinear one
(Matthaeus et al. 1983, 1994).

Some constraints on the frequency spectrum and the energies
for the outward- and inward-propagating components are derived
from the observations. The Alfvénic fluctuation power spectrum
in the fast solar wind evolves with distance (R), not self-similarly,
with a power-law dependence on!with slope�1 and�5/3 at low
and high frequencies, respectively. The two intervals are sepa-
rated by a critical frequency (!�), which depends on R. In iden-
tifying the fluctuations with Alfvén waves, it is useful to adopt the
Elsässer variables z� ¼ u� sgn(B0)b/ 4��ð Þ1=2 (corresponding,
respectively, to outward- and inward-propagatingAlfvén waves if
the mean magnetic field B0 is pointing outward from the Sun).
The energy per unit mass residing in the outward- and inward-
propagating modes (E� ¼ jz�j2, respectively) decreases with
distance for both, and for R < 2:5 AU, Eþ / R�1:48, and R� /
E�0:42 (Bavassano et al. 2000b). The normalized cross helicity
�c ¼ (Eþ � E�)/(Eþ þ E�), which accounts for the imbalance
between the outward and inward component, also evolves with
distance, and it is approximately equal to 1 in the inner solar
wind. It decreases for R > 0:4 AU and oscillates around �0.4
for R > 2:5 AU (Bavassano et al. 2000a).

It must be recalled that the observed features cannot be ex-
plained either by linear propagation theory (including reflection)
or byMHD turbulence separately. A linear analysis applied to the
solar wind case shows that low-frequency waves (! < 10�5 Hz)
experience the strongest reflection in the photosphere, chromo-
sphere, and corona (Hollweg 1978, 1981; Similon & Zargham
1992). Their flux at the transition region is greatly reduced (even
if considerable power is transmitted to the corona), and in the
outer (supersonic) solar wind the radial dependence of �c de-
duced from observations is similar to the radial dependence one
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finds at higher frequencies in the linear regime (Velli et al. 1991).
On the other hand, the high-frequency waves (10�4 Hz < ! <
10�2 Hz) are almost completely transmitted (even if in the pho-
tosphere and chromosphere their reflection is relatively high),
both the Eþ and E� energies decrease with distance faster than
the scaling law deduced from observation, and finally, �c � 1 in
the outer solar wind (Velli et al. 1991). The dynamics of a well-
developed turbulent state in the expanding solar wind has been
studied aswell, and ordering of the characteristic timescale, which
should effectively favor the development of a turbulent cascade
in planes perpendicular to the direction of wave propagation (along
the magnetic field), has been found (Zank et al. 1996; Matthaeus
et al. 1998, 1999;Dmitruk et al. 2001a, 2002;Dmitruk&Matthaeus
2003; Oughton et al. 2001, 2004). Numerical models capable of
reproducing the observed �c-profiles in the supersonic part of
the solar wind (Zhou & Matthaeus 1989, 1990) or the spectral
evolution (Tu et al. 1984; Tu 1988; Velli et al. 1989) necessarily
use ad hoc assumptions and simplifications, and even if con-
siderable advances have been made, a complete understanding
of the solar turbulent spectrum and the solar wind acceleration
(Li et al. 1999; Habbal et al. 1995) has not been achieved.

Here we investigate the combined effect of wave reflection and
turbulent dissipation in order to understand the relative importance
of linear and nonlinear effects on the overall evolution of the fluc-
tuation amplitudes.Comparisons of the numerical resultswith some
observations give some constraints on thefields at the photospheric
and coronal level forwhich data are still missing, with implications
for numerical models of solar wind acceleration. In the context of
a reflection-driven turbulent cascade process, another interesting
issue concerns the evolution of the turbulent spectrum. If one sup-
poses that the Alfvén waves are injected at the photospheric base at
a well-defined frequency or with a given correlation time, one
would expect to find a signature of this characteristic timescale in
the observed spectrum at 1 AU (or in other words, one can ask if
discrete modes and turbulence can coexist; Dmitruk et al. 2004).
No injection frequency is observed in the solar wind spectrum, so
one can ask if both the turbulent evolution and the frequency-
dependent transmission properties of the solar atmosphere andwind
can efficiently smooth this supposed strong forcing signature.

We numerically integrate the equations for the velocity and
magnetic field fluctuations (written in terms of the Elsässer fields)
for a stationary model atmosphere with a supraspherically ex-
panding wind, from the photosphere to 1 AU for a set of fre-
quencies chosen in the range 10�6 Hz < ! < 10�2 Hz. Each
wave is identified via its frequency, while a phenomenological
nonlinear term is added to the equations in order to account for
both turbulent dissipation and frequency coupling.

2. THE MODEL

The equations describing the propagation of Alfvén waves in
an inhomogeneous stationary medium can be derived from the
MHD equations under the assumption of incompressible adia-
batic transverse fluctuations. The velocity (u) and magnetic field
fluctuations (b) are combined to form the Elsässer variables,
which describe Alfvén waves propagating outward (zþ) or in-
ward (z�). In terms of these variables, the equation for the two
fields reads

@ z�

@t
þ ½(U � VA) =: �z� þ z� =:ð Þ(U � VA)

� 1

2
z�� z�
� �

:=VA � 1

2
(: =U )

� �
¼ � z� =:ð Þz� ; ð1Þ

where U is the mean wind speed, the Alfvén speed is VA ¼
B0/ 4��ð Þ1=2, and colinearity between the magnetic and gravita-
tional fields is assumed. On the right-hand side we have grouped
the nonlinear terms (except the total pressure, which in the limit
of incompressible fluctuations can also be written as the product
of zþ, z�, and their gradients). In the linear part of equation (1)
we can recognize a propagation term (second term) and two terms
accounting for reflection due to the variation of the properties of
the medium, one isotropic (fourth term) and the other (third term)
involving variations along the fluctuations’ polarization.
The chromosphere and the photosphere are modeled as a static

layer, 2400 km thick,with themagnetic field organized in a flux tube
in supraspherical geometry with constant temperature. The density
varies almost exponentially, and the magnetic field varies according
to the flux tube expansion (A) in order to reproduce the properties of
a coronal hole in the quiet Sun (Hollweg et al. 1982). Across the
transition region, the density falls off by 2 orders of magnitude, and
the wind passes from a speed of 0 to 8 km s�1, while the magnetic
field strength is continuous (about 10 G). The corona also expands
supraspherically, and its temperature profile is chosen to fit obser-
vations (see Fig. 1); it starts at 8 ; 105 K at the coronal base, peaks
at about 3 ; 106 K at 3 R�, and then falls off with distance as r

�0:7

(Casalbuoni et al. 1999). The wind speed profile follows from
the wind equations with a given temperature and flux tube ex-
pansion of the form A(r)¼ f (r)r 2, where f is a function that has a
maximum close to the coronal base and tends to a finite value at
large distances (seeKopp&Holzer 1976;Munro& Jackson 1977).
The same functional form is chosen for the expansion in the static
part of the atmosphere, but different parameters are selected in order
to obtain realistic values for the magnetic field and its continuous
variation at the transition region. In the photosphere and chromo-
sphere, the profile for Alfvén speed is obtained from magnetic flux
conservation, B ¼ B0A0/A(r), and the density profile imposed.
Following Dmitruk et al. (2001b) we choose the following

model for the nonlinear terms in equation (1),

NL�
j ¼ z� (!j)

Z�j j
L(r)

; ð2Þ

where L represents an integral turbulent dissipation length and
jZ�j stands for the total amplitude of the Elsässer field inte-
grated over the whole spectrum (�) at the point r; hence, Z�j j ¼
f
R
�½jz�(!)j

2
/!� d!g1=2. This choice overestimates the transfer

rate between high-frequencymodes, for which the Alfvén effect
is important (Shebalin et al. 1983). In reality, the predominant
interaction, as seen below, concerns the lowest frequency reflected
mode and the full outward-propagating spectrum, for which the
resonance effects are not important.
The energy distribution among the modes influences the dis-

sipation rate of all the waves coupled. In particular, at a fixed total
rms energy, dissipation is reduced if the energy of the higher
frequency waves is comparable to the lower frequency ones (flatter
spectra) with respect to the case in which most of the energy is
contained in the low-frequency modes (steeper spectra; Verdini
et al. 2005). Equation (1) can be simplified by including the
systematic variation of the Elsässer amplitude in a new normal-
ized variable z�N ¼ z�O (MA � 1)/ MAð Þ1=2, which reduces to z�N ¼
�z�O �

1=4 in the limit of small Alfvénic Mach number MA ¼
U /VA ! 0 (see Heinemann & Olbert 1980). After Fourier trans-
forming the linear equations in time and adding the phenomeno-
logical nonlinear term, one obtains

(U � VA)z
� 0

N � i!z�N � 1

2
(U � VA)

V 0
A

VA

z�N ¼ � jZ�
O j
L

z�N ; ð3Þ
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where the prime indicates a derivative with respect to r. The nu-
merically integrated equations are

z�
0

N � i
!

U � VA

z�N � 1

2

V 0
A

VA

z�N ¼ � jZ�
O j

(U � VA)L
z�N ð4Þ

for the corona, while for the photosphere and the chromosphere
one gets

z�
0

N � i
!

VA

z�N þ 1

2

V 0
A

VA

z�N ¼ � jZ�
O j

VAL
z�N : ð5Þ

The second, third, and last coefficients in equations (4) and (5)
represent the propagation (P), reflection (R), and nonlinear
dissipation (NL) coefficients, respectively (inverse of parallel
wavelength, reflection scale height, and nonlinear length scale).
The dissipative feature of the nonlinear terms can be shown by
multiplying the above equation (3) in its old variables form by
the complex conjugate z�� to obtain the evolution equations for
the Elsässer energies at a given frequencyE� � 1

2 jz� (!)j
2
. On the

right-hand side, one gets�jz�j2jZ�j/L, which is independent of
the phase difference between the two fields and involves the total
amplitude of the fluctuations (the same term appears in the equa-
tion for a static atmosphere). In the presence of a wind, energy flux
as a conserved quantity is replaced for linearly propagating waves
by the total wave action flux, which can be written as the dif-
ference between an outgoing and ingoing flux,

S� ¼ Sþ� S� ¼ 1

4
�UA

;
U þ VA

UVA

U þ VAð Þ zþj j2� U � VA

UVA

U � VAð Þjz�j2
� �

;

ð6Þ

where the superscripted plus and minus refer to the outward
and inward direction, respectively, and S is the wave action.

The inward wave action density vanishes at the Alfvén critical
point (XA � 13 R�, where the Alfvén speed equals the wind

speed), so one can write S� ¼ Sþ0 � S�0 ¼ Sþc , where the index c
stands for the critical point, while the index 0 refers to the base
of the layer. The amplitude and phase of the outward-propagating
Elsässer field (zþ) at XA define the natural boundary conditions,
since the critical point is a regular singular point for the incoming
wave equation, because the phase velocity of the mode vanishes
there; total wave action density is imposed, and the amplitude and
phase of z� can be derived by demanding the regularity of the
solutions at XA. However, boundary conditions are chosen to
ensure an amplitude of the rms velocity field fluctuations (i.e.,
summed over the whole spectrum) of�40 km s�1 at 1 R�, as con-
strained by observations (Banerjee et al. 1998), with an assigned
spectral distribution; this requires some trial and error, since non-
linearity does not allow rescaling of the photospheric amplitude
by simply rescaling values at the critical point XA. The shape
of the photospheric spectrum is imposed approximately thanks
to the quasi-linear properties of the waves in the photosphere-
chromosphere layer (small wave amplitudes) and the fact that
transmission and nonlinearity yield frequency-independent evo-
lution in the low corona, as shown in x 3. Given a slope p at
the Alfvénic critical point, the transmission coefficient of the
static layer T (!) (see Krogulec & Musielak 1998 for discussion
on it),

T (!) ¼ Sþc
Sþ0

¼ �cVAc

�0VA0

zþc
�� ��2
zþ0
�� ��2 ¼

zþNc
�� ��2
zþN0

�� ��2 ; ð7Þ

can therefore be used to correct the initial spectrum jzþ(!)j ¼
jzþ(!0)j(!/!0)

p to the desired spectrum at the photosphere, im-
posing jzþ(!)j ¼ jzþ(!0)j T (!)½ �1=2(!/!0)

p. In order to describe
the spectrum, 32 modes are chosen in the range of frequency
between 10�6 and 10�2 Hz with increasing resolution at higher
frequencies.

The phenomenological turbulent length scale varies as L(r) ¼
L0 A(r)½ �1=2, where L0 ¼ 34;000 km is imposed at the coronal
base and corresponds to the average size of the supergranules.
Thewaves are propagated from theAlfvénic critical point forward
(to Earth orbit) and backward (to the base of the corona) by the
integration of equation (4). The conservation of the energy flux
across the transition region allows one to determine the Elsässer

Fig. 1.—From top left, clockwise: Wind speed (solid line) and Alfvén speed (dotted line), numerical density, temperature, and expansion factor as functions of heliocentric
distance for the modeled atmosphere.
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fields below the discontinuity, which are propagated back to the
base of the photosphere using equation (5).

3. RESULTS

Following Velli (1993) we compare the characteristic length
scales of equations (4) and (5) in the two layers. First consider the
thick lines in Figure 2,which represent the reflection and nonlinear
coefficients (solid and dashed lines, respectively) normalized to the
propagation coefficient for ! ¼ 10�6, 10�4, and 10�2 Hz (black,
gray, and light gray lines, respectively) for a flat photospheric
spectrum. Reflection has amaximumat the transition region, and it
falls off by a factor of about 100 in the corona (because of the
density drop). The zeros in the reflection coefficient appearing for
both the zþ and the z� depend on the fact that V 0

A ¼ 0 (approxi-
mately in the corona), while the one located at XA appears only for
the backward-propagatingwaves, since the propagation coefficient
becomes infinite there (see eq. [4]). For the outward-propagating
wave (Fig. 2, left), reflection is generally much greater (a factor of
100) than dissipation in the photosphere-chromosphere and in the
very low corona (below �1.2 R�). Further out, the nonlinear
dissipation is smaller than the reflection but of the same order of
magnitude. For the inward-propagating wave (Fig. 2, right),
again reflection dominates in the photosphere-chromosphere
(by a factor of 10), but in the corona the dissipative coefficient is
comparable to or much greater than the reflection coefficient.

Hence, the relative dissipation of the linearly conserved quan-
tities, as defined below in equation (8), has different features in the
two layers. In Figure 3we plot the total wave action density for the
corona (main panel) and the total wave energy flux for the static
layer (inset) normalized to their base value for all the frequencies
that form the spectrum, i.e.,

S�(r; !)

S�0 (!)
¼ jzþN j

2 � jz�N j
2

jzþN0
j2 � jz�N0

j2
¼ 1� 1

2 jzþN0
j2 � jz�N0

j2
� �

;

Z r

r0

dr

LVA

Z�
O

�� ��
1þMA

zþN
�� ��2þ Zþ

O

�� ��
1�MA

z�N
�� ��2� 	

; ð8Þ

with the normalization used to derive equation (3): the coefficients
appearing in the integral are the nonlinear frequency-integrated
coefficients discussed above.
In the upper chromosphere, the flux tube expansion is very

rapid and the reflection is strong. Both the ingoing and outgoing
waves contribute to the damping of the energy flux (comparable—
less than 1 order of magnitude difference—nonlinear coefficient
and wave amplitudes), and the relative dissipation is very high.
Low-frequency modes (Fig. 3, inset [lower plots]) are the most
damped (the most reflected), while high-frequency modes (inset
[top plot]) are the least damped. In fact, inspection of equation (8)
reveals that the relative dissipation is quadratic in the frequency-
dependent wave amplitudes (jz�N j

2
), which in turn increase with

decreasing frequency because of the different reflection rate. In
the corona, beyond 2 R� the dissipation coefficient for the out-
going waves is weaker, and their amplitudes grow; reflection is

Fig. 2.—Comparison of the reflection (R; thick dashed line) and nonlinear coefficient (NL; thick solid line) normalized to the propagation coefficient (P) for the outgoing
and ingoing wave at three different frequencies (10�6, 10�4, and 10�2 Hz; black, gray, and light gray lines, respectively). Also shown as a thin solid line is the contribution of
each frequencywave to the nonlinear coefficient. The photospheric frequency spectrum is flat, and the boundary conditions atXA are set to get an rms velocity field fluctuation
at the coronal base �u ¼ 40 km s�1. [See the electronic edition of the Journal for a color version of this figure.]

Fig. 3.—Normalized wave action density for the corona as a function of dis-
tance for five frequencies (10�6 Hz, solid line; 10�5 Hz, dotted line; 10�4 Hz,
dashed line; 10�3 Hz, dot-dashed line; 10�2 Hz, double-dotYdashed line). The
wave energy flux for the photosphere-chromosphere is plotted in the inset with
the same line coding.
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weaker as well, and an imbalance between outgoing and ingoing
fluxes holds. Only the former contribute to the wave action density
dissipation, since now the dominant quadratic dependence in equa-
tion (8) comes from the outgoing mode (see, e.g., the approximate
conservation form used by Cranmer & van Ballegooijen 2005).
Note that for all frequencies the wave action density decreases at
approximately the same rate. It turns out that the amplitude evo-
lution is driven mainly by the nonlinear, frequency-independent
term in the corona and by the reflection, frequency-dependent
term in the photosphere-chromosphere, a feature we find again
by studying the power spectrum evolution. In comparison, the
heating rate per unit mass, an absolute measure of energy dis-
sipation, integrated over the spectrum,

Q

�
¼ Qþ

�
þ Q�

�
¼ Zþj j2 Z�j j þ Z�j j2 Zþj j

L(r)
; ð9Þ

is generally higher in the corona than in the photosphere-
chromosphere, as shown in Figure 4. In the latter layer, both the
ingoing and outgoing wave contribute to the total amount of
heating rate, while in the former most of the dissipation comes

from the outgoing mode. The absolute dissipation is quadratic
in the frequency-integrated wave amplitudes, and in the corona
outgoingwaves are allowed to growalmost undamped (low relative
dissipation), but the existence of a small seed of ingoing waves en-
sures a large absolute dissipation. This is not true in the photosphere-
chromosphere, before the rapid expansion of the flux tube, where
the wave amplitude is small and there is a small imbalance between
outgoing and ingoing propagating wave amplitudes.

The effect of a different slope of the initial spectrum can be
understood by analyzing the contribution of each frequency to the
nonlinear coefficient, plotted in thin lines in Figure 2. Startingwith
a flat photospheric frequency spectrum results in an approxi-
mately equal contribution to the total nonlinear term in the whole
atmosphere, except for the outer corona, where the nonlinear
coefficient for the outward-propagating wave is made up of es-
sentially backward-propagating waves at low frequencies. Note
also that the frequency-decomposed nonlinear coefficient is
approximately the same for outgoing and ingoing propagating
waves in the photosphere-chromosphere, since reflection is high
enough compared to dissipation. It follows that if a Kolmogorov-
like photospheric spectrum (E/! / !�5=3) is imposed, the non-
linear term is mainly made up of low-frequency waves for both
counterpropagating waves in both the layers. This can be seen
in Figure 5 by comparing the thick and thin solid lines; for
! k 10�4 Hz the contribution to the nonlinear coefficient is gen-
erally less then 10%. An exception is found below 2 R� for the
outgoing mode, since reflection is high even for intermediate-
frequency waves (see Fig. 7 for the photospheric layer). Note
that a dip in the (frequency-integrated) nonlinear coefficient for
the outgoing mode appears below the location of vanishing re-
flection in both the photosphere and low corona, since the energy
resides mainly in the low-frequency mode.

This separate behavior in the two layers has strong consequences
on spectral evolution. In Figure 6 the (compensated) total power
in the fluctuations is plotted for different heliocentric distances.
An almost Kolmogorov-like spectrum is imposed at the base of
the photosphere with the procedure described at the end of x 2.
At very low frequencies the spectrum practically does not evolve

Fig. 4.—Heating rate per unit mass integrated over the whole spectrum as a
function of heliocentric distance. The contributions of the ingoing (dashed line) and
outgoing (dotted line) heating rates are also shown. The transition region (T.R.) and
the Alfvénic critical point (XA � 13 R�) are indicated on the x-axis.

Fig. 5.—Same as Fig. 2, but for a photospheric Kolmogorov-like frequency spectrum. [See the electronic edition of the Journal for a color version of this figure.]
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over the whole domain, while there is a tendency to steepen at low
to intermediate frequencies (10�5 Hz P ! P 10�3 Hz). The be-
havior at high frequencies is quite complicated. Some irregulari-
ties appear very close to the base of the photosphere, and the
overall tendency is that of flattening. Note, however, that most of
the changes in the shape occur in the photosphere-chromosphere,
where the waves display a strong frequency-dependent behavior.
This makes the spectral evolution very similar to the linear case
below the transition region (except the energy level of the spec-
trum), and the appearance of the irregularities can be interpreted
by means of linear analysis. Accordingly, in Figure 7 we plot the
transmission coefficient, defined in equation (7), as a function
of frequency for the photosphere-chromosphere. Note that the
transmission is constant at low frequency, decreases at inter-
mediate frequencies, and increases again at high frequencies,
where several transmission peaks appear; basically all spectral
evolution is qualitatively reproduced. The peaks originate from
the discontinuity in the reflection scale height at the transition
region (Velli 1993). In fact, the amplitude of the reflected waves
shows some nodes inside the domain, and when their location
coincides with the base of the photosphere the transmission is
enhanced (a condition that depends on the frequency of thewaves;
see Hollweg 1978). When nonlinearities are introduced, the lo-
cation of the nodes depends also on the wave amplitude imposed
at XA (see Verdini et al. 2005), and similarly, if these nodes are
located near the base of the photosphere, irregularities in the
spectrum appear.

The slope of the spectrum imposed at the photosphere has
negligible effects on the total power spectral evolution; however,
it changes the amount of energy residing in the ingoing and out-
going modes (or in the kinetic or magnetic fluctuations) at large

distances, and some constraints on the slope can be obtained using
the available observational data. In Figure 8 the Elsässer energies
E� integrated over the frequency spectrum are plotted (solid and
dashed lines, respectively) along with theUlysses andHelios data
(Bavassano et al. 2000b) for a Kolmogorov (thick lines) and a flat
(thin lines) initial slope with �u ¼ 40 km s�1 at the coronal base.
Both the data and the expected slopes are reproduced by the
Kolmogorov-like photospheric spectrum, while the flat one has
an outgoing energy that is too high and an ingoing energy that is
too low. The effect of high energy on high-frequency waves is
that of dissipating the inward waves, since high-frequency waves
are mainly outward propagating; as a result, outgoing waves are
allowed to propagate almost undamped, and their energy content
is therefore higher. Note that in the Kolmogorov case a dip, very
close to the coronal base, appears as a signature of vanishing
ingoing waves, a feature of the low-frequency reflected waves.
This results in a vanishing absolute dissipation (heating), which
is not found for the flat case and has important consequences for
the acceleration and heating of the solar wind.
In the following we consider only a Kolmogorov spectrum. In

Figure 9 the rms amplitude of the velocity field fluctuation inte-
grated over the whole spectrum is plotted as a function of helio-
centric distance (solid line; with the dotted line we also plot the
magnetic field fluctuation in velocity units), along with some
observational data (taken fromCranmer& van Ballegooijen 2005),
to which we address the following comments.

1. Filled diamonds show nonthermal line-broadening veloci-
ties measured by SUMER on the disk (Wilhelm et al. 1995).

Fig. 7.—Transmission coefficient for the photosphere-chromosphere as a
function of frequency.

Fig. 6.—Compensated power spectrum as a function of heliocentric distance for
a photospheric Kolmogorov-like initial spectrum. Each line is labeled with the
corresponding heliocentric distance in units of R�. From top to bottom, solid lines
indicate the photospheric base, the transition region, XA, and 1 AU.

Fig. 8.—Frequency-integrated Elsässer energies as a function of heliocentric
distance for a Kolmogorov and a flat photospheric spectrumwith �u ¼ 40 km s�1

at the coronal base (thick and thin lines, respectively). Symbols indicate observa-
tional constraints (see text for explanation).

Fig. 9.—The rms amplitudes �u and �b (in velocity units) as functions of he-
liocentric distance for a photospheric Kolmogorov spectrum with �u ¼ 40 km s�1

at the coronal base. Symbols indicate observational constraints (see text for
explanation).
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2. Crosses show nonthermal velocities derived from SUMER
observations above the solar limb (Banerjee et al. 1998).

3. The box represents the upper and lower limit given by Esser
et al. (1999) from UVCS off-limb data.

4. Stars show early measurements from Armstrong & Woo
(1981).

5. The bars show recent measurements of transverse ve-
locity field fluctuation using radio scintillation (Canals et al.
2002).

6. Filled bars show theHelios andUlysses data for the Elsässer
energies from Bavassano et al. (2000b), rewritten in terms of the
velocity field fluctuation, assuming equipartition between mag-
netic and kinetic energy.

Note that theHelios andUlysses data are obtained by averaging
over periods k1 hr (corresponding to ! P 10�4 Hz), while all
the other points in the figure refers to rms values.

The overall agreement is quite good, even if data suggest a
smaller power (more dissipation) just above the transition region
and a larger power ( less dissipation) at about 2 R�. Note that
because of the equipartition assumption the Helios and Ulysses
data disagree with the integrated quantities (the correct com-
parison has already been made above in Fig. 8). As noted by
Cranmer & van Ballegooijen (2005), the longitudinal velocity
fluctuation data ( filled diamonds) agree very well with the mag-
netic field fluctuation amplitudes (dashed line) and could indicate
wave coupling among the transverse and longitudinal modes.
At leading order, compressive effects are driven by the mag-
netic pressure originating from the incompressible fluctuations
and represent a way for Alfvén waves to get rid of the energy
excess above the transition region. If these compressional waves
are isotropic and suffer some dumping via shock formation, or
other processes active in the low corona, they can reproduce the
measured parallel �u and supply the heating needed by the current
model of wind acceleration.

4. CONCLUSIONS

In this paper we have modeled the nonlinear evolution of
Alfvén waves propagating through the photosphere, the corona,
and the solar wind up to 1 AU. Nonlinear interactions occur be-
tween outward-propagating and reflectedwaves, and it is assumed
that a nonlinear cascade develops preferentially in a direction
perpendicular to that of propagation, which we take to coincide
with the direction of the mean radial magnetic field. While the
phenomenological nonlinear term acts as a dissipative sink for
both outward and inward waves independently of the wave
frequency, reflection, provided by the stratification of the layer,
is generally strong at low frequencies and decreases with increasing
frequency.

We find that most of the heating occurs in the low corona
(below the Alfvénic critical point), while very little power is dis-
sipated below the transition region. For reasonable velocity field
fluctuations at the base of the photosphere, a sufficient amount
of energy flux is transmitted through the transition region. The
adopted frequency coupling is not able to reproduce the ob-
served spectral slope and evolution in the Alfvénic range even
though frequency-integrated data at large distances constrain
the outer spectrum to be steep (�5/3 slope). The modification
of the frequency spectrumoccursmainly in the chromosphere and
in the photosphere, since waves experience a strong reflection at
all the frequencies considered, while in the corona and the solar
wind, the spectrum maintains approximately the same shape one
finds at the coronal base.

Nonlinear dissipation based on reflection acts in different ways
depending both on the (ingoing and outgoing) wave amplitude
and on the layer considered. In the corona, reflection is not very
high, but the outgoing wave amplitude is allowed to grow, so that
the wave evolution is driven by the nonlinear interactions (all the
modes evolve in the same way), and one finds a strong heating rate
in the sub-Alfvénic corona. In the photosphere-chromosphere, a
strong reflection rate, combined with small wave amplitudes, leads
to an evolution similar to the linear case, which depends on fre-
quency, and a small heating rate. As a result, most of the wave
energy dissipation takes place in the first 4 R� above the coronal
base. The driving modes for dissipation are the modes that ex-
perience the biggest reflection, generally low-frequency modes.
However, depending on themodel of atmosphere, i.e., on its charac-
teristic scale height, and on the energy distribution, i.e., flat or steep
spectra, intermediate-frequency modes can be important as well.

The spectral shape varies mainly below the transition region;
it steepens at low to intermediate frequencies (10�5 Hz P ! P
10�3 Hz) and flattens at high frequencies (! k 10�3 Hz), show-
ing the characteristic features (energy peaks and frequency
distribution) one finds in the transmission coefficient (linear be-
havior). In the corona it maintains approximately the shape one
finds beyond the transition region because of the form of the non-
linear term adopted. The very low frequency range (! P 10�5 Hz)
practically does not evolve in the whole layer, and it keeps the
original slope at the photosphere.With this model of nonlinearities,
one can conclude that the spectrum one finds at 1 AU is basically
the same spectrum at the base of the corona. The input spectrum at
the photosphere, whatever the shape is, is instead stronglymodified
by the transmission properties of the atmosphere below the tran-
sition region (independently of the model used for the nonlinear
interaction). The energy peaks in the spectrum, resulting from an
enhanced transmission at high frequencies, indicate that, even in the
presence of nonlinear interactions, the photospheric layer acts as a
filter for the energy injected through photospheric footpointmotion.
If a smoothing of the forcing frequency is to be present, it must
occur in this highly stratified layer. The data at large distances
suggest that the energy at high frequency should be very low;
however, we find an energy increase at high frequency. Since
the spectral evolution in the corona also depends on the approx-
imate frequency coupling contained in the nonlinear term, con-
straints on the photospheric input spectrumcannot be given safely.
Given that high-frequencywaves are transmitted through the tran-
sition region and are quite energetic in the very low corona, some
other mechanism must be invoked to dissipate high-frequency
waves, or a better modeling of the nonlinearities, which we plan
to do in future works, is needed. As first pointed out by Hollweg
(1981), such a high-frequency energy reservoir can be the source
for plasma heating processes operating in the low corona. Note
that not only do the peaks contribute to the energy budget, but the
general flattening of the spectrum is important as well. A com-
parison with measurements of �u suggests that the model can be
considered a very good approximation in the outer corona and
solar wind, while, despite the good agreement found in the low
corona, some other processes must be invoked to reproduce the
observed features below the Alfvénic critical point, such as com-
pressible effects and wave coupling, especially in the chromo-
sphere and photosphere. Other models of turbulent transport have
been constructed to fit the decay of turbulence with distance from
the Sun in the solar wind beyond 1 AU (Smith et al. 2001; Breech
et al. 2005), as well as to explain the extended heating in this
region. Here the Alfvén speed can be neglected in the transport
of the fluctuations, so that in some sense our model equations
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should be consistent with theirs, when rewritten in terms of the
second-order moments. A generalization of turbulence trans-
port equations consistent in the corona, acceleration region, and
solar wind is a topic of current research.
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